0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxRNTS
↳13 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 IntTrsBoundProof (UPPER BOUND(ID), 140 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 11 ms)
↳18 CpxRNTS
↳19 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 191 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 58 ms)
↳24 CpxRNTS
↳25 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 116 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 44 ms)
↳30 CpxRNTS
↳31 FinalProof (⇔, 0 ms)
↳32 BOUNDS(1, n^1)
list(Cons(x, xs)) → list(xs)
list(Nil) → True
list(Nil) → isEmpty[Match](Nil)
notEmpty(Cons(x, xs)) → True
notEmpty(Nil) → False
goal(x) → list(x)
list(Cons(x, xs)) → list(xs) [1]
list(Nil) → True [1]
list(Nil) → isEmpty[Match](Nil) [1]
notEmpty(Cons(x, xs)) → True [1]
notEmpty(Nil) → False [1]
goal(x) → list(x) [1]
list(Cons(x, xs)) → list(xs) [1]
list(Nil) → True [1]
list(Nil) → isEmpty[Match](Nil) [1]
notEmpty(Cons(x, xs)) → True [1]
notEmpty(Nil) → False [1]
goal(x) → list(x) [1]
list :: Cons:Nil → True:isEmpty[Match]:False Cons :: a → Cons:Nil → Cons:Nil Nil :: Cons:Nil True :: True:isEmpty[Match]:False isEmpty[Match] :: Cons:Nil → True:isEmpty[Match]:False notEmpty :: Cons:Nil → True:isEmpty[Match]:False False :: True:isEmpty[Match]:False goal :: Cons:Nil → True:isEmpty[Match]:False |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
list
notEmpty
goal
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Nil => 0
True => 1
False => 0
const => 0
goal(z) -{ 1 }→ list(x) :|: x >= 0, z = x
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
{ notEmpty } { list } { goal } |
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: ?, size: O(1) [1] |
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] |
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] |
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] list: runtime: ?, size: O(1) [1] |
goal(z) -{ 1 }→ list(z) :|: z >= 0
list(z) -{ 1 }→ list(xs) :|: z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] list: runtime: O(n1) [1 + z], size: O(1) [1] |
goal(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1, z >= 0
list(z) -{ 2 + xs }→ s :|: s >= 0, s <= 1, z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] list: runtime: O(n1) [1 + z], size: O(1) [1] |
goal(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1, z >= 0
list(z) -{ 2 + xs }→ s :|: s >= 0, s <= 1, z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] list: runtime: O(n1) [1 + z], size: O(1) [1] goal: runtime: ?, size: O(1) [1] |
goal(z) -{ 2 + z }→ s' :|: s' >= 0, s' <= 1, z >= 0
list(z) -{ 2 + xs }→ s :|: s >= 0, s <= 1, z = 1 + x + xs, xs >= 0, x >= 0
list(z) -{ 1 }→ 1 :|: z = 0
list(z) -{ 1 }→ 1 + 0 :|: z = 0
notEmpty(z) -{ 1 }→ 1 :|: z = 1 + x + xs, xs >= 0, x >= 0
notEmpty(z) -{ 1 }→ 0 :|: z = 0
notEmpty: runtime: O(1) [1], size: O(1) [1] list: runtime: O(n1) [1 + z], size: O(1) [1] goal: runtime: O(n1) [2 + z], size: O(1) [1] |